Equivariant Picard groups and Laurent polynomials
نویسندگان
چکیده
Let $G$ be a finite group. For $G$-ring $A,$ let ${\rm Pic}^{\it G}({\it A})$ denote the equivariant Picard group of $A.$ We show that if $A$ is type algebra over field $k$ then contracted in sense Bass with contraction $H_{et}^{1}(G; Spec(A), \mathbb{Z}).$ This gives natural decomposition A[t, t^{-1}]}).$
منابع مشابه
Decompositions of Laurent Polynomials
In the 1920’s, Ritt studied the operation of functional composition g ◦ h(x) = g(h(x)) on complex rational functions. In the case of polynomials, he described all the ways in which a polynomial can have multiple ‘prime factorizations’ with respect to this operation. Despite significant effort by Ritt and others, little progress has been made towards solving the analogous problem for rational fu...
متن کاملMultivariate Positive Laurent Polynomials
Recently Dritschel proves that any positive multivariate Laurent polynomial can be factorized into a sum of square magnitudes of polynomials. We first give another proof of the Dritschel theorem. Our proof is based on the univariate matrix Féjer-Riesz theorem. Then we discuss a computational method to find approximates of polynomial matrix factorization. Some numerical examples will be shown. F...
متن کاملLaurent Polynomials and Superintegrable Maps
This article is dedicated to the memory of Vadim Kuznetsov, and begins with some of the author’s recollections of him. Thereafter, a brief review of Somos sequences is provided, with particular focus being made on the integrable structure of Somos-4 recurrences, and on the Laurent property. Subsequently a family of fourth-order recurrences that share the Laurent property are considered, which a...
متن کاملLaurent polynomials and Eulerian numbers
Article history: Received 24 August 2009 Available online 25 February 2010
متن کاملOrthogonal basic hypergeometric Laurent polynomials
The Askey-Wilson polynomials are orthogonal polynomials in x = cos θ, which are given as a terminating 4φ3 basic hypergeometric series. The non-symmetric AskeyWilson polynomials are Laurent polynomials in z = eiθ, which are given as a sum of two terminating 4φ3’s. They satisfy a biorthogonality relation. In this paper new orthogonality relations for single 4φ3’s which are Laurent polynomials in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2021
ISSN: ['1945-5844', '0030-8730']
DOI: https://doi.org/10.2140/pjm.2021.312.219